Effects of 1,25-dihydroxyvitamin D3 on the differentiation of MC3T3-E1 osteoblast-like cells
نویسندگان
چکیده
Purpose The purpose of this study was to evaluate the effects of 1,25-dihydroxyvitamin D3 on the proliferation, differentiation, and matrix mineralization of MC3T3-E1 osteoblast-like cells in vitro. Methods MC3T3-E1 osteoblastic cells and 1,25-dihydroxyvitamin D3 were prepared. Cytotoxic effects and osteogenic differentiation were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) activity assay, ALP staining, alizarin red S staining, and reverse transcription-polymerase chain reaction (RT-PCR) for osteogenic differentiation markers such as ALP, collagen type I (Col-I), osteocalcin (OCN), vitamin D receptor (VDR), and glyceraldehyde 3-phosphate dehydrogenase. Results The MTT assay showed that 1,25-dihydroxyvitamin D3 did not inhibit cell growth and that the rate of cell proliferation was higher than in the positive control group at all concentrations. ALP activity was also higher than in the positive control group at low concentrations of 1,25-dihydroxyvitamin D3 (10-10, 10-12, and 10-14 M). RT-PCR showed that the gene expression levels of ALP, Col-I, OCN, and vitamin D receptor (VDR) were higher at a low concentration of 1,25-dihydroxyvitamin D3 (10-12 M). Alizarin red S staining after treatment with 1,25-dihydroxyvitamin D3 (10-12 M) showed no significant differences in the overall degree of calcification. In contrast to the positive control group, formation of bone nodules was induced in the early stages of cell differentiation. Conclusions We suggest that 1,25-dihydroxyvitamin D3 positively affects cell differentiation and matrix mineralization. Therefore, it may function as a stimulating factor in osteoblastic bone formation and can be used as an additive in bone regeneration treatment.
منابع مشابه
اثر هم افزایی کاربرد توأم زهر زنبور عسل و25،1- دی هیدروکسی ویتامینD3 برالقای تمایز رده ی سلولی سرطانی پرومیلوسیتی HL-60
Introduction & Objective: Acute promyelocytic leukemia (APL) is a kind of acute leukemia characterized by a balanced t (15, 17) translocation which fails to develop into mature cells and proliferate in an unregulated fashion. In the recent years, in addition to combinatoral chemotherapy to treat unmature cancerous cells, differentiation therapy by differentiating agents as a novel procedure ...
متن کاملDexamethasone and 1,25-Dihydroxyvitamin D3 Reduce Oxidative Stress-Related DNA Damage in Differentiating Osteoblasts
The process of osteoblast differentiation is regulated by several factors, including RUNX2. Recent reports suggest an involvement of RUNX2 in DNA damage response (DDR), which is important due to association of differentiation with oxidative stress. In the present work we explore the influence of two RUNX2 modifiers, dexamethasone (DEX) and 1,25-dihydroxyvitamin D3 (1,25-D3), in DDR in different...
متن کاملIn Vitro Differentiation of Preosteoblast-Like Cells, MC3T3-E1, to Adipocytes Is Enhanced by 1,25(OH)2 Vitamin D3
Osteoblasts and adipocytes originate from common mesenchymal progenitor cells and are controlled by specific transcription factors. While 1,25-dihydroxyvitamin D3 (vitamin D) is known to be an important factor for osteoblast differentiation, there are conflicting reports regarding its effect on adipogenesis. In this study, we attempted to understand the effect of exposure of preosteoblasts (MC3...
متن کاملPrimary Human Osteoblasts in Response to 25-Hydroxyvitamin D3, 1,25-Dihydroxyvitamin D3 and 24R,25-Dihydroxyvitamin D3
The most biologically active metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has well known direct effects on osteoblast growth and differentiation in vitro. The precursor 25-hydroxyvitamin D3 (25(OH)D3) can affect osteoblast function via conversion to 1,25(OH)2D3, however, it is largely unknown whether 25(OH)D3 can affect primary osteoblast function on its own. Furthermore, 25(OH)D3 is not o...
متن کاملProtein-disulfide isomerase-associated 3 (Pdia3) mediates the membrane response to 1,25-dihydroxyvitamin D3 in osteoblasts.
Protein-disulfide isomerase-associated 3 (Pdia3) is a multifunctional protein hypothesized to be a membrane receptor for 1,25(OH)(2)D(3). In intestinal epithelium and chondrocytes, 1,25(OH)(2)D(3) stimulates rapid membrane responses that are different from genomic effects via the vitamin D receptor (VDR). In this study, we show that 1,25(OH)(2)D(3) stimulates phospholipase A(2) (PLA(2))-depende...
متن کامل